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Abstract

Nitric oxide can interact with a wide range of proteins including many that are involved in 

metabolism. In this review we have summarized the effects of NO on glycolysis, fatty acid 

metabolism, the TCA cycle, and oxidative phosphorylation with reference to skeletal muscle. 

Low to moderate NO concentrations upregulate glucose and fatty acid oxidation, while higher 

NO concentrations shift cellular reliance toward a fully glycolytic phenotype. Moderate NO 

production directly inhibits pyruvate dehydrogenase activity, reducing glucose-derived carbon 

entry into the TCA cycle and subsequently increasing anaploretic reactions. NO directly inhibits 

aconitase activity, increasing reliance on glutamine for continued energy production. At higher 

or prolonged NO exposure, citrate accumulation can inhibit multiple ATP-producing pathways. 

Reduced TCA flux slows NADH/FADH entry into the ETC. NO can also inhibit the ETC directly, 

further limiting oxidative phosphorylation. Moderate NO production improves mitochondrial 

efficiency while improving O2 utilization increasing whole-body energy production. Long-term 

bioenergetic capacity may be increased because of NO-derived ROS, which participate in adaptive 

cellular redox signaling through AMPK, PCG1-α, HIF-1, and NF-κB. However, prolonged 

exposure or high concentrations of NO can result in membrane depolarization and opening of 

the MPT. In this way NO may serve as a biochemical rheostat matching energy supply with 

demand for optimal respiratory function.
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Introduction

A crucial aspect of metabolic homeostasis is matching adenosine 5’-triphosphate (ATP) 

production with demand. This process necessitates matching both in terms of total amount 

but also in terms of rate. Briefly, the most efficient metabolic pathways are also the slowest, 

so during high-intensity exercise, these pathways are unable to supply ATP at the required 

rate. Mitochondrial oxidative phosphorylation is required for the efficient conversion of 

reducing equivalents, such as nicotinamide adenine dinucleotide (NADH), to cellular energy. 

However, this process is considerably slower than the rates of glycolysis or the hexose 

monophosphate shunt. The flip side is that such high-rate energy sources are ultimately 

limited by the buildup of unresolved reduction equivalents that results in acidification. While 

this may seem like a simple supply and demand problem, it is vital that the rates and routes 

of ATP production and use are well matched for maximum physiological performance. This 

represents a complex signaling problem that centers upon the mitochondrion as the key to 

overall metabolic function and specific rates of oxidative phosphorylation.

Multiple cellular signals serve to regulate metabolic flux broadly. In the cytosol, increased 

amounts of adenosine monophosphate (AMP), adenosine diphosphate (ADP), and inorganic 

phosphate (Pi) signify an energy decrement, increasing glycolytic flux and the production 

of pyruvate and lactate1–3. Within the mitochondria, acetyl-CoA (primarily from the 

breakdown of carbohydrates and fats), calcium ion concentrations, O2 tension, NADH+H+, 

flavin adenine dinucleotide (FADH2), ADP, and Pi concentrations influence tricarboxylic 

acid (TCA) cycle and electron transport chain (ETC) flux respectively4,5. A multitude of 

other signals such as hormones (epinephrine, norepinephrine, insulin, glucagon), blood flow, 

and body temperature can also regulate metabolic rate. Working together, these pathways act 

to maintain ATP supply despite rapid increases in ATP demand during muscle contraction. 

However, an acute regulator of mitochondrial function, whose function can be significantly 

altered by available O2 tension is nitric oxide (NO). The role of NO as a fine tuner in 

mitochondrial function is summarized in Figure 1.

Nitric oxide is a powerful, short-lasting signaling molecule capable of regulating a 

wide range of physiological functions, including vascular homeostasis, immune response, 

cognitive function, and metabolism. Nitric oxide can readily participate in one electron 

reduction and oxidation reactions leading to the formation of a range of reactive nitrogen 

species, the production of which is dependent upon the cellular environment6. These reactive 

species can react with lipids and various proteins, including enzymes and transport proteins 

essential to glucose and fatty acid metabolism, the TCA cycle, and the respiratory chain7,8. 

Endogenously generated by several nitric oxide synthase (NOS) enzymes, NO is present 

both in the systemic vasculature and within mitochondrial space9. It has a short half-life 

(<2 seconds) that varies with O2 concentration within the tissue, and NO exerts its effects 

in a dose-dependent manner10. Recently, the reduction of nitrogen oxides like nitrite and 

nitrate has been evidenced as an important source of NO chemistry11. This review will 

discuss how NO regulates metabolic flux within the mitochondria by its interactions with 

specific proteins. In this way, NO modifies cellular utilization of metabolic substrates, the 

availability of O2, and the production of extramitochondrial signals to match the energy 

needs to their supply in the cell, which may be critical for optimal respiration.
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1. Production and Molecular Targets

NO is endogenously generated by several NOS enzymes, which catalyze the oxidation 

of L-arginine to NO12. Regular NO production from the constitutive expression of NOS1 

(neuronal; nNOS) and NOS3 (endothelial; eNOS) produces low nanomolar amounts of 

NO necessary to maintain vascular homeostasis13–15. During inflammatory events, NO 

production is rapidly increased via upregulated NOS2 (inducible; iNOS) expression12,16. 

NOS enzymes are not tissue specific and expression of NOS isoforms have been found 

within the mitochondria (termed mtNOS)17. In addition, it should be remembered, especially 

within mitochondria, that nitrite can be reduced back to NO by a range of metalloproteins, 

including xanthine oxidoreductase (XOR) and myoglobin18. NO can interact with a wide 

variety of biological molecules with potential signaling consequences19–21. Thus, a critical 

factor in NO regulation of physiological systems is its flux rate of production and the 

relative concentrations of target molecules.

NO will bind to metal centers, such as heme-iron or iron-sulfur centers, to produce nitrosyl-

metal species or to cysteine thiols (S-nitrosylation) to produce S-nitrosothiols (SNOs)21,22. 

Additionally, nitrosation reactions result in the direct or indirect addition of a nitrosonium 

ion (NO+), which may also form nitrosothiols21. Furthermore, nitration reactions lead to the 

addition of a nitronium ion (NO2+), forming a nitro functional group (R-NO2)21. Finally, 

NO may react with reactive oxygen species (ROS), leading to the production of higher 

oxides of nitrogen such as peroxynitrite. The topic of NO reactivity has been discussed 

more thoroughly elsewhere20,21 and here we will focus on potential targets within metabolic 

control.

2. TCA Cycle Flux and the Fate of Carbon Substrates

3.1 Pyruvate dehydrogenase (PDH)

Part of the larger pyruvate dehydrogenase complex (PDC), PDH catalyzes the oxidative 

decarboxylation of glucose-derived pyruvate into acetyl-COA for entry in the TCA23–25. 

The downregulation of PDH reduces cellular usage of glucose, subsequently increasing 

the use of fatty acids for energy26,27.Several mechanisms have been proposed for 

how NO or NO derivates can directly inhibit PDH activity, including S-nitrosylation 

of PDC subunit dihydrolipoamide dehydrogenase28. PDH inhibition increases with NO 

production, reducing glucose-derived carbon entry into the TCA and increasing anaploretic 

pyruvate carboxylation and glutamonolysis29. This allows continued production of TCA 

intermediates such as α-ketoglutarate, citrate, or itaconate, for continued energy production 

(glutamine-derived NADH and FADH2 for the ETC) or for the synthesis of lipids30,31. 

While decreased PDH activity may blunt TCA cycle flux and downstream oxidative 

phosphorylation and ATP output, it also allows for the conservation of valuable metabolic 

substrates, such as pyruvate and lactate, that can be used for gluconeogenesis or for 

supporting cellular growth and other anabolic pathways32–34. Reduced PDH activity post-

exercise may play a role in glycogen resynthesis post-intensive exercise by sparring 

carbohydrates from cellular oxidation35,36.
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3.2 Aconitase

Mitochondrial aconitase, which catalyzes the isomerization of citrate to isocitrate in the 

TCA cycle37, is an iron–sulfur-containing dehydratase, which is a target of oxidation 

and inhibition by ROS, NO, and NO derivates37. Under normal conditions, high 

TCA cycle turnover and subsequent ETC respiration leads to increased production of 

ATP and mitochondrial ROS. These ROS can regulate TCA flux, inhibiting aconitase 

activity, reducing glucose-derived carbon oxidation and sparing glucose for use in other 

metabolic pathways, and activating alternative pathways for ATP production. NO and 

NO derivates decrease both mitochondrial and cytosolic aconitase activity in a dose-

dependent manner, with a more significant effect on mitochondrial aconitase38–43. High 

levels of NO production lead to complete reduction in aconitase activity, preventing citrate 

isomerization and subsequent formation of α-ketoglutarate. In turn, this promotes increased 

glutaminolysis30.The inhibition of aconitase results in the accumulation of mitochondrial 

citrate, which has numerous effects on cellular energy production by inhibiting ATP-

producing pathways44. This includes inhibition of glycolytic enzymes phosphofructokinase, 

pyruvate kinase, and PDH, as well as decreased carnitine palmitoyltransferase (CPT-1) 

mediated fatty acid transport44. Citrate accumulation upregulates ATP-consuming pathways 

and supports lipid synthesis45.

3.3 Glucose and Fatty Acid Metabolism

Physiological levels of NO alter blood glucose homeostasis via upregulation of glucose 

transporter (GLUT) expression, although the exact mechanism of action varies by cell 

type46–53. In skeletal muscle, insulin-independent GLUT translocation requires activation 

of the primary energy sensor, AMP-activated protein kinase (AMPK). Increased muscle 

activity will reduce ATP concentrations, activate AMPK, and stimulate NO production. 

This signals cGMP-dependent GLUT-4 translocation to the cell membrane50,54–57. nNOS-

derived NO mediates both insulin-independent (AMPK mediated) and insulin-dependent 

GLUT transport in skeletal muscle58. AMPK itself is directly regulated by NO, creating 

a mechanism for self-regulation of glucose homeostasis in resting and exercising skeletal 

muscle55,59. In addition to altering glucose transport, both exogenous NO donors and 

eNOS derived NO reduce gluconeogenesis and glycogenesis in liver cells, i.e., reduce 

anabolism60–62. Not surprisingly, increased glucose uptake coupled with decreased 

gluconeogenesis, glycogenesis, fatty acid oxidation, and cellular respiration leads to an 

upregulation of glycolysis as the main source of energy production63–65.

Both endogenously and exogenously produced NO alter lipolysis, fatty acid uptake, and 

fatty acid oxidation in a dose-dependent manner. NO inhibits fatty acid synthesis in 

rat liver while decreasing acetyl-CoA carboxylase (ACC) activity, reducing malonyl-CoA 

concentration, and leading to upregulation of CPT166. This is further supported by studies 

demonstrating that the use of NOS inhibitors decreased fatty acid oxidation via decreased 

CPT activity67. Arginine (a precursor to NO) and low-dose nitrate supplementation 

increase lipolysis and fatty acid oxidation, with the latter increasing cGMP activity and 

CPT1 expression in mice65,68. Higher nitrate doses also upregulate PGC-1α, resulting in 

mitochondrial biogenesis and increased fatty acid oxidative capacity68. Post-translational 

modification via S-nitrosylation of acyl-CoA dehydrogenase improves the enzyme’s 
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efficiency in mouse liver, which may increase fatty acid metabolism (although this has 

not been directly tested)7. Leptin alters lipolysis via several NO-mediated pathways69,70. 

Acute leptin exposure increases NO production and lipolysis in rat white adipose tissue, an 

effect that is inhibited with NOS inhibitors71. However, prolonged leptin exposure decreases 

lipolysis via NO-mediated signaling, potentially serving as a self-regulator for energy 

storage71. High flux NO decreases leptin-mediated lypolysis72; while iNOS-derived NO in 

stimulated macrophages decreases lipolysis and β-oxidation via inhibition of the respiratory 

chain73. Finally, NO reduces catecholamine-mediated lipolysis through inhibition of β-

adrenergic signaling74–76.

3. Cellular Respiratory Chain

3.1 Flow of Electrons and the Utilization of Oxygen

The heme-containing enzymes of the ETC (complexes I-IV) located on the inner 

mitochondrial membrane are well-studied targets of NO. Electrons are transferred from 

one complex to the next through a sequence of redox reactions, while complexes I, III, and 

IV pump protons into the intermembrane space. The resulting proton gradient is used to 

phosphorylate ADP to ATP via ATP synthase. Oxygen serves as the final electron acceptor 

binding at complex IV to produce ATP, CO2, and H2O. Inhibition at any point in the ETC 

slows the flow of electrons, altering the rate of O2 consumption, ATP production, and the 

generation of ROS. Functionally, a build-up of reducing equivalents NADH and FADH2 will 

signal energy demands are met and slow upstream TCA cycle flux. Decreased respiratory 

flux allows O2 to be diverted toward other, non-ATP producing pathways.

3.2 Complex I and Complex III

Detailed mechanisms underlying the inhibition of additional complexes in the ETC have 

been covered elsewhere77. NO can reversibly inhibit the NADH: ubiquinone oxidoreductase 

(complex I). Unlike at complex IV, inhibition at complex I is likely not due to the direct 

binding of NO but occurs via the S-nitrosation of specific thiol residues or oxidative stress 

via interaction with peroxynitrite78–82. Similar inhibition has been observed at ubiquinol: 

cytochrome c oxidoreductase (complex III) from mtNOS and NO donor S-nitrosoglutathione 

(GSNO), leading to increased ROS production83,84.

3.3 Cytochrome C Oxidase

Cytochrome c oxidase (complex IV) catalyzes the final step in electron transport, oxidizing 

cytochrome c and reducing O2 to produce H2O. The enzyme’s O2 binding site is a 

binuclear heme iron/copper center, which constantly cycles between oxidized and reduced 

states85. The relative amounts of oxidized to reduced cytochrome c oxidase present at 

any time are dependent on the O2 levels in the mitochondrial environment, with oxidation 

increasing with high O2 tension (PO2)86. NO can bind to cytochrome c oxidase in both its 

reduced (competitive with O2) and oxidized (non-completive) states. This competitive and 

non-completive binding allows NO to regulate mitochondrial respiration over the range of 

normal to hypoxic cellular environments. At high PO2, NO non-competitively binds the Cu 

center in fully oxidized cytochrome c oxidase, reducing cytochrome c oxidase and forming 

nitrite87–89. At low PO2, NO reversibly binds to reduced cytochrome c oxidase, directly 
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competing with O2. This leads to inhibition of individual mitochondrial respiration, the 

diversion of O2 toward other cellular targets, and alters the production of reactive oxygen 

and nitrogen species (RONS)90–93.

3.4 Cellular Respiration and Mitochondrial O2 Gradients

The relative amount of cytochrome c oxidase in the reduced state is increased under hypoxic 

conditions (i.e., contracting skeletal muscle), increasing the affinity for NO. However, 

in the tissue environment, concentrations of NO and O2 are not uniform94. Cells most 

proximal to the sources of endogenously produced NO (i.e., the vascular endothelium) will 

experience greater inhibition of respiration. The sparing of O2 from consumption in these 

proximal cells extends the half-life of O2, allowing O2 to travel further along its gradient 

toward deeper, more hypoxic tissue10,94–96. Additionally, the half-life of NO increases under 

hypoxic conditions, allowing for constant diffusion into tissue further from the blood vessel. 

This establishes a feed-forward mechanism that perpetuates smoothing of the concentration 

gradient for O2
10,94,96. Finally, because the maximal capacity of mitochondrial respiration 

exceeds O2 delivery, sites near the endothelium (or other sources of endogenously produced 

NO) still retain adequate energy supply, despite modest NO reductions to ETC function. The 

result is that NO supports increased cellular and/or whole-body energy production through 

an increased number of respiring mitochondria.

4. Mitochondrial Efficiency

4.1 Matching ATP Production with O2 Consumption

O2 consumption is tightly coupled to proton pumping and ATP synthesis during 

mitochondrial respiration. However, several other pathways exist through which either 

protons may re-enter the mitochondrial matrix (proton leak) or in which O2 is consumed. 

This uncoupling reduces mitochondrial efficiency. Under normal conditions, base levels 

of proton leak occur unregulated (basal leak), accounting for approximately 5% of 

total mitochondrial proton leak. NO can alter the electrochemical proton gradient used 

to synthesize ATP through several mechanisms, including changing inner mitochondrial 

membrane-bound protein expression or function. High concentrations of NO cause inner 

membrane depolarization through the formation of ONOO- and the opening of the 

mitochondrial permeability transition pore (MPT)97,98. Low NO flux protects against 

decreases in membrane potential, potentially via S-nitrosylation of membrane-bound 

proteins98–100. Nitrate supplementation has also been shown to decrease the expression 

of two mitochondrial membrane proteins, adenine nucleotide translocase (ANT) and 

uncoupling protein (UCP), which may be important mediators of proton leak18,101–103. 

In a recent study performed by Wynne and colleagues, it was observed that nitrite can 

stimulate the glycolytic ATP supply without the loss of the oxidative ATP supply in skeletal 

muscle cells104. This indicates that nitrates increase the overall rates of myocellular ATP 

production104. Additionally, nitrates result in an overall shift away from non-mitochondrial 

respiration104. Taken together, this indicates that nitrate supplementation has the potential to 

lower the oxygen cost of ATP production104.
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4.2 Mitochondrial Efficiency and Exercise Capacity

There is strong evidence that NO can enhance mitochondrial efficiency during exercise 

by improving the coupling of ATP synthesis with the dissipation of the proton gradient, 

thus improving the mitochondrial oxidative efficiency18,105,106. These effects are likely 

mediated by NO control over the mitochondrial membrane potential. Several studies have 

shown that oral nitrate supplementation reduces whole-body O2 consumption (VO2) at 

various submaximal workloads18,105–109. Importantly, this observed decrease in VO2 is 

not accompanied by any significant changes in heart rate, respiratory exchange ratio, 

lactate accumulation, or maximal work capacity achieved. This suggests either a reduced 

O2 requirement for a given workload or an increased aerobic efficiency at submaximal 

exercise105–108. Additionally, nitrate supplementation during high-intensity exercise has 

been observed to increase time to task failure without a change in VO2 max achieved107,108. 

Numerous studies have replicated that nitrate supplementation reduces O2 demand and 

increases exercise tolerance across multiple exercise modalities, including cycling, running, 

and walking109–117. This effect is dose dependent, and has sustained benefits, with results 

persisting up to 15 days110,112. Nitrate supplementation has been observed to provide 

greater benefit at submaximal workloads for low-to-moderate aerobically fit individuals or 

individuals with reduced exercise capacity due to disease, but not for higher-level athletes. 

Concurrently, there have been studies that show that nitrite supplementation fails to improve 

mitochondrial function and efficiency, indicating that improvements seen with nitrate 

supplementation may occur through a mechanism other than oxygen consumption118,119. 

Additionally, several studies have indicated that nitrate supplementation resulted in no 

mitochondrial improvements or reduced oxygen cost during exercise, indicating a need 

for more research in this field to determine the effects of nitrate supplementation and the 

mechanisms by which they may occur120,121.

5. Adaptive Signaling

5.1 Indirect Effects of NO Signaling

NO regulates the rate of mitochondrial ROS production, especially superoxide 

(O2
−)11,122,123. The fate of O2

− is determined by the relative balance of other oxidants 

(i.e., NO, ONOO, NO2) and antioxidant defense mechanisms124–126. Superoxide can 

form peroxynitrite (ONOO−) by interactions with free NO127,128, and H2O2 and H2O by 

mitochondrial superoxide dismutase (mnSOD)129. mnSOD is abundantly present in the 

inner mitochondrial matrix and is essential for the removal of mitochondrially-produced 

free radicals, which arise during anaerobic metabolism129–131. There are several pathways 

through which mitochondrial ROS cross the mitochondrial membrane and participate 

in redox signaling within the cell132. ROS can act on several downstream bioenergetic 

mediators, including crucial energy regulators, AMPK and PGC-1α, as well as transcription 

factors such as NF-κB and HIF-1133–136.

AMPK can be activated by various stressors, including low nutrient levels and prolonged 

exercise137. When ATP levels are decreased, AMPK becomes activated138,139 leading to 

increased ATP-generation138,140. AMPK regulates glucose uptake in muscle and fat cells 

by increasing GLUT4 trafficking to the cell membrane and regulates the rate-limiting 
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enzymes of lipid metabolism Acetyl-CoA carboxylase and HMG-CoA reductase138,141–143. 

AMPK can also increase mitochondrial biogenesis through activation of signaling pathways 

such as NRF-1 and PGC-1144–147. AMPK contributes to muscle fiber type remodeling, 

angiogenesis, and regulates autophagy and mitophagy3,140,148–150. AMPK signaling also 

directly affects NOS signaling. AMPK activation has been shown to inhibit iNOS 

expression151,152. Additionally, AMPK has been observed to phosphorylate eNOS and 

nNOS, leading to their activation152–154, while eNOS has been implicated in the 

induction of AMPK152,154. PGC1-α is a transcriptional co-activator that regulates cellular 

metabolism in muscle tissue147,155,156. PGC1-α responds to several stimuli, including 

ROS, ATP demand, and cellular stress, to initiate transcription of downstream genes155,157 

encoding mitochondrial proteins, leading to mitochondrial biogenesis155,158–161. Activation 

of PGC1-α regulates skeletal muscle fiber type and contraction, lipid uptake, and 

glucose transport155,156,162. Additionally, PCG1-α activation leads to the upregulation of 

SOD155,156,163,164. PCG1-α is directly activated via exercise, low cellular energy155, and 

its expression is regulated by NO in skeletal muscle59. Short-term exposure to NO in 

endothelial cells downregulates PGC1-α ,however, the opposite effects occur with long-term 

exposure165.

HIF-1, a hypoxia sensitive transcription factor, serves to preserve O2, while maximizing 

ATP production by stimulating glycolysis, erythropoiesis and angiogeneis166,167. Exercise 

can generate micro-regions of acute hypoxia, and thus induce HIF-1 signaling166,168. NO 

and other reactive nitrogen species, can directly and indirectly affect HIF-1 activation169. 

At low NO levels promote HIF-1α degradation, whereas high concentrations promote 

its function, stabilizing it even in normoxic conditions169,170. This upregulation increases 

transcription of proteins related to mitochondrial function, glycolysis, erythropoiesis, and 

angiogenesis171–173. In addition, the hypoxic conditions that occur in muscle tissue during 

exercise lead to increased NO production, further contributing to HIF-1 activity and its 

downstream effects171.

5.2. Direct NO Signaling and Metabolic Adaptations

Low levels of NO, that do not significantly inhibit cellular respiration, decrease superoxide 

production174. Similarly, inhibition of mitochondrial respiration during hypoxic conditions 

(i.e., contracting skeletal muscle) temporarily decreases mitochondrial-derived ROS 

production via NO reduction of ETC flux175,176. However, mitochondria are the primary 

source for ROS following exercise, which may be important in adaptation to training177–180. 

Conversely, moderate and high levels of NO, result in inhibition of complex I & IV, 

decreasing O2 consumption and inducing a dose dependent increase in ROS and a buildup of 

reducing equivalents80,181.

6. Conclusions

Although often overlooked in models of metabolic regulation, NO plays a vital role in 

fine-tuning the catabolic and anabolic pathways of the cell. The potential interactions of 

NO in metabolic regulation of working tissue, such as contracting muscle, are summarized 

in Figure 2. The overall effect of NO on metabolic output is driven by NO concentration, 
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rate of production, and the localization of NO within the cell or tissue environment10,98. 

The mobilization and subsequent oxidation of glucose and fatty acids is upregulated by 

low, potentially eNOS-derived, NO production. During times of increased energy demands, 

such as in contracting skeletal muscle, NO activates AMPK-mediated pathways for energy 

procurement49,54,140. Physical activity directly increases NO flux, as increased blood flow 

and sheer stress stimulate vascular eNOS expression and NO production182–184. Minor 

inhibition at the respiratory chain coupled with increased glucose transport, decreased 

fatty acid oxidation, and an increased need for ATP serve to increase glycolytic flux 

during intensive exercise. At submaximal intensities, moderate NO production improves the 

utilization of O2 for ATP production via decreased uncoupling across the inner membrane 

and increased recruitment of respiring mitochondria105. Post-physical activity recovery or 

long-term bioenergetic capacity may be increased because of NO-derived ROS, AMPK, 

PCG1-α, HIF-1, and NF-κB signaling3,175,177,185,186. Increased mitochondrial biogenesis 

and transcription of mitochondrial proteins increase the overall oxidative capacity of the cell, 

leading to long-term training adaptions and improvements.

NO is known for its diverse roles in multiple biological processes ranging from vascular 

health to cognition and metabolic function. NO is capable of inhibiting or enhancing 

metabolic function, dependent on its own production rate and localization within the cell. 

Metabolic output is tightly controlled to balance ATP producing and ATP consuming 

processes. While there are many regulators of metabolic flux, there is clear evidence that 

NO is central to cellular energy control, serving as both a sensor and director of metabolic 

output. In this way, it appears that NO operates like a metabolic rheostat fine tuning energy 

production to match demand. For this function it is necessary that the right amount of NO be 

produced at the right time for efficient regulation, not that more is always better.
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Abbreviations:

ATP Adenosine 5’-triphosphate

NADH nicotinamide adenine dinucleotide

AMP adenosine monophosphate

ADP adenosine diphosphate

Pi inorganic phosphate

FADH2 flavin adenine dinucleotide

TCA tricarboxylic acid

ETC electron transport chain
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NO nitric oxide

NOS nitric oxide synthase

XOR xanthine oxidoreductase

SNOs S-nitrosothiols

ROS reactive oxygen species

PDH pyruvate dehydrogenase

PDC pyruvate dehydrogenase complex

CPT-1 carnitine palmitoyltransferase

GLUT glucose transporter

AMPK AMP-activated protein kinase

ACC acetyl-CoA carboxylase

GSNO S-nitrosoglutathione

PO2 O2 tension

RONS reactive oxygen and nitrogen species

MPT mitochondrial permeability transition pore

ANT adenine nucleotide translocase

UCP uncoupling proteins

VO2 whole-body O2 consumption

O2
− superoxide

ONOO− peroxynitrite

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

HIF-1 hypoxia-inducible factor-1

NRF-1 nuclear respiratory factor-1
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Highlights.

• The mechanisms by which NO can regulate cellular metabolism are 

discussed.

• The intersection between NO and mitochondrial function is considered 

especially with consideration of how metabolic rate can alter these processes.

• Mechanisms that may explain how NO can improve mitochondrial efficiency 

are presented.

• NO as a regulator of long-term bioenergetics is also considered as the concept 

of NO as a biological rheostat is presented.
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Figure 1. Nitric Oxide Operates to Balance Mitochondrial Flux and Optimize Cellular ATP 
Production.
NO can regulate both catabolic and anabolic substrate flux through the mitochondrion so 

that O2 usage can be optimized such that the ATP produced per unit time matches the energy 

demand of the cell. Ultimately long-term activation of NO signaling can lead to adaptive 

signaling such that the cell can operate with the highest efficiency.
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Figure 2: NO Regulation of Mitochondrial Metabolism.
Low to moderate NO concentrations upregulate glucose and fatty acid oxidation via 

multiple pathways, while higher NO concentrations serve to shift cellular reliance away 

from fatty acid oxidation and cellular respiration toward a fully glycolytic phenotype. 

NO-induced AMPK activation mediates GLUT4 expression on the cell surface membrane 

and increased glycolytic flux. AMPK enhances NO production via NOS phosphorylation. 

Moderate NO production within the cytosol directly inhibits PDH, reducing glucose-derived 

carbon entry into the TCA, the use of fatty acids for energy while conserving lactate 

and pyruvate for utilization in other anabolic pathways. Within the mitochondria, NO 

directly inhibits aconitase, increasing TCA reliance on glutamine for continued energy 

production. At higher or prolonged NO exposure, subsequent citrate accumulation can 

inhibit multiple ATP-producing pathways, including CPT-1 and several glycolytic enzymes 

(not shown). Reduced TCA flux slows NADH/FADH entry into the respiratory chain, 

which also experiences direct NO inhibition at complex IV. Minor inhibition of the ETC, 

with increased glucose transport and decreased fatty acid oxidation, serves to increase 

glycolytic flux during high energy demand (i.e., exercise). Moderate NO production can 

also improve mitochondrial efficiency via decreased expression of ANT and UPC-3 across 

the inner membrane while improving O2 utilization by diverting O2 toward more hypoxic 

tissue, increasing whole-body energy production. Long-term bioenergetic capacity may be 

increased because of NO-derived ROS, which are able to cross the mitochondrial membrane 

and participate in adaptive cellular redox signaling primarily through AMPK, PCG1-α, 

HIF-1, and NF-κB. However, prolonged exposure or high concentrations of NO results 

in membrane depolarization and opening of the MPT, excessive and potentially damaging 
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ROS production, and the shift from oxidative phosphorylation toward total reliance on less 

efficient glycolysis for energy production.
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